Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Medical Immunology (Russia) ; 25(1):181-192, 2023.
Article in Russian | EMBASE | ID: covidwho-2315622

ABSTRACT

The studies on humoral immune response in the individuals who have undergone COVID-19 and vaccinated with anti-COVID vaccines allows us to assess the development of "hybrid" immunity, which contributes to understanding the mechanisms of its formation from the effector phase to the step of immunological memory. We assessed the relative and absolute contents of B cell populations and subpopulations, development of humoral immunity in the patients who suffered with COVID-19 of varying severity being thereafter vaccinated with "KoviVak" and "Sputnik V". The study involved volunteers (age 47.3+/-14.5 years) who beared COVID-19 asymptomatically (n = 32), at moderate severity (n = 21), or had severe form of the disease (n = 12), then being vaccinated with "KoviVak" and "Sputnik V" 6-9 months after their recovery. The groups of vaccinated persons consisted of those who beared severe disease being vaccinated with "KoviVak" (n = 6) or "Sputnik V" (n = 6);moderate cases, vaccinated with "KoviVak" (n = 10) and "Sputnik V" (n = 11);asymptomatic cases vaccinated with "KoviVak" (n = 10) and "Sputnik V" (n = 22). We have determined relative and absolute numbers of B lymphocytes (CD45+CD19+), B1 lymphocytes (CD45+CD5+CD19-CD27-), B2 lymphocytes (CD45+CD19+CD5-CD27-), total population of memory B cells (CD45+CD19+CD5-CD27+), non-switched (CD45+CD19+IgD+CD27+), and switched (CD45+CD19+IgD-CD27+) memory B cells;mature naive B lymphocytes (CD45+CD19+CD27-IgD+), plasmoblasts (CD45+CD19+ CD38+++IgD-CD27+), as well as presence of IgG to S(RBD)-SARS-CoV-2 protein. We have found that the humoral immunity among survivors of COVID-19 of varying severity is expressed for up to nine months. The largest number of volunteers who raised antibodies to SARS-CoV-2 S-protein was registered in the group of seriously ill patients. As soon as 1 month after "Sputnik V" vaccination and until the end of the observation, all the examined subjects in this group became seropositive. 4-5 months after injection of this vaccine, specific immunoglobulins were present in all patients who had asymptomatic or average-severity infection. All volunteers who received "KoviVak" had antibodies to the COVID-19 viral S protein from the beginning to the end of the study. Vaccination, especially with "KoviVak", contributed to the highest increase, both in relative and absolute numbers of memory B lymphocytes in asymptomatic patients. Less pronounced changes in the content of B lymphocytes in COVID-19 patients who had severe and moderate clinical course may be associated with higher levels of these cells prior to injection of the vaccines. A positive correlation was found between the number of memory B cells and presence of immunoglobulins to the S protein SARS-CoV-2 in all examined patients.Copyright © 2023 Russian Association of Allergologists and Clinical Immunologists, St. Petersburg Regional Branch (SPb RAACI). All rights reserved.

2.
Russian Journal of Infection and Immunity ; 12(3):409-423, 2022.
Article in Russian | EMBASE | ID: covidwho-2267367

ABSTRACT

Current review presents a brief overview of the immune system dysregulation during acute COVID-19 and illustrates the main alterations in peripheral blood CD4+ T-cell (Th) subsets as well as related target cells. Effects of dendritic cell dysfunction induced by SARS-CoV-2 exhibited decreased expression of cell-surface HLA-DR, CCR7 as well as co-stimulatory molecules CD80 and CD86, suggesting reduced antigen presentation, migratory and activation capacities of peripheral blood dendritic cells. SARS-CoV-2-specific Th cells could be detected as early as days 2-4 post-symptom onset, whereas the prolonged lack of SARS-CoV-2-specific Th cells was associated with severe and/or poor COVID-19 outcome. Firstly, in acute COVID-19 the frequency of Th1 cell was comparable with control levels, but several studies have reported about upregulated inhibitory immune checkpoint receptors and exhaustion-associated molecules (TIM3, PD-1, BTLA, TIGIT etc.) on circulating CD8+ T-cells and NK-cells, whereas the macrophage count was increased in bronchoalveolar lavage (BAL) samples. Next, type 2 immune responses are mediated mainly by Th2 cells, and several studies have revealed a skewing towards dominance of Th2 cell subset in peripheral blood samples from patients with acute COVID-19. Furthermore, the decrease of circulating main Th2 target cells - basophiles and eosinophils - were associated with severe COVID-19, whereas the lung tissue was enriched with mast cells and relevant mediators released during degranulation. Moreover, the frequency of peripheral blood Th17 cells was closely linked to COVID-19 severity, so that low level of Th17 cells was observed in patients with severe COVID-19, but in BAL the relative number of Th17 cells as well as the concentrations of relevant effector cytokines were dramatically increased. It was shown that severe COVID-19 patients vs. healthy control had higher relative numbers of neutrophils if compared, and the majority of patients with COVID-19 had increased frequency and absolute number of immature neutrophils with altered ROS production. Finally, the frequency of Tfh cells was decreased during acute COVID-19 infection. Elevated count of activated Tfh were found as well as the alterations in Tfh cell subsets characterized by decreased "regulatory" Tfh1 cell and increased "pro-inflammatory" Tfh2 as well as Tfh17 cell subsets were revealed. Descriptions of peripheral blood B cells during an acute SARS-CoV-2 infection werev reported as relative B cell lymphopenia with decreased frequency of "naive" and memory B cell subsets, as well as increased level of CD27hiCD38hiCD24- plasma cell precursors and atypical CD21low B cells. Thus, the emerging evidence suggests that functional alterations occur in all Th cell subsets being linked with loss-of-functions of main Th cell subsets target cells. Furthermore, recovered individuals could suffer from long-term immune dysregulation and other persistent symptoms lasting for many months even after SARS-CoV-2 elimination, a condition referred to as post-acute COVID-19 syndrome.Copyright © 2022 Saint Petersburg Pasteur Institute. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL